Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans
نویسندگان
چکیده
Dysregulation of splicing factor expression and altered alternative splicing are associated with aging in humans and other species, and also with replicative senescence in cultured cells. Here, we assess whether expression changes of key splicing regulator genes and consequent effects on alternative splicing are also associated with strain longevity in old and young mice, across 6 different mouse strains with varying lifespan (A/J, NOD.B10Sn-H2(b) /J, PWD.Phj, 129S1/SvlmJ, C57BL/6J and WSB/EiJ). Splicing factor expression and changes to alternative splicing were associated with strain lifespan in spleen and to a lesser extent in muscle. These changes mainly involved hnRNP splicing inhibitor transcripts with most changes more marked in spleens of young animals from long-lived strains. Changes in spleen isoform expression were suggestive of reduced cellular senescence and retained cellular proliferative capacity in long-lived strains. Changes in muscle isoform expression were consistent with reduced pro-inflammatory signalling in longer-lived strains. Two splicing regulators, HNRNPA1 and HNRNPA2B1, were also associated with parental longevity in humans, in the InCHIANTI aging study. Splicing factors may represent a driver, mediator or early marker of lifespan in mouse, as expression differences were present in the young animals of long-lived strains. Changes to alternative splicing patterns of key senescence genes in spleen and key remodelling genes in muscle suggest that correct regulation of alternative splicing may enhance lifespan in mice. Expression of some splicing factors in humans was also associated with parental longevity, suggesting that splicing regulation may also influence lifespan in humans.
منابع مشابه
Expression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells
Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...
متن کاملRole of Aberrant Alternative Splicing in Cancer
Alternative splicing can alter genome sequence and as a consequence, many genes change to oncogenes. This event can also affect protein function and diversity. The growing number of study elucidate the pathological influence of impaired alternative splicing events on numerous disease including cancer. Here, we would like to highlight the significant role of alternative splicing in cancer biolog...
متن کاملColony Forming Unit Endothelial Cells Do not Exhibit Telomerase Alternative Splicing Variants and Activity
Introduction: Endothelial progenitor colony forming unit-endothelial cells (CFU-EC) were first believed to be the progenitors of endothelial cells, named endothelial progenitor cells. Further studies revealed that they are monocytes regulating vasculogenesis. The main hindrance of these cells for therapeutic purposes is their low frequency and limited replicative potentials. This study was unde...
متن کاملDifferential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain
Background: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of ...
متن کاملIn vitro Interaction and Colocalization of HSV-1 ORF P with a Cellular Splicing Factor (SC35) Using Pulldown Assay
Herpes simplex virus type-1 (HSV-1) causes a variety of diseases in human. This virus is a neurotropic pathogen of human that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes including ICP34.5 control HSV-1 pathogenicity and ICP34.5 has been identified as HSV-1 virulence gene. Open reading frame P (ORF P) is also a HSV-1 gene that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016